Acceder al contenido principalAcceder al menú principalLa UAM

Campus de Excelencia InterncionalCampus of International Excellence

Agenda

Todos

Total 100 eventos
Agenda de eventos
FechaEvento
07/11/2018 - 07/11/2018Las nuevas Neurotecnologías: impacto en la Ciencia, Medicina y Sociedad

SPEAKER:

DR. Rafael Yuste

Professor of Biological Sciences, Director NeuroTechnology Center, Columbia University, New York.

 

24/05/2018 - 24/05/2018Tunable proximity effect in cuprate superconductor/graphene junctions

Presentación a cargo de David Perconte-Duplain

(Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay)

Abstract:  

Superconductivity induced by proximity effect is particularly interesting in graphene. For example, because of the conduction and valence bands touching at the Dirac point, an unusual form of the Andreev reflection (the so-called specular Andreev reflection) has been predicted theoretically to happen at a superconductor/graphene interface [1]. We have fabricated cuprate superconductor/graphene planar junctions using a combination of lithography, ion irradiation and CVD graphene transfer techniques. The conductance measurements show that the interfaces are transparent such that the electrical transport is governed by Andreev reflection. The devices allow the modulation of graphene doping via either a top or a back gate, and thus enable electrical control of the graphene’s Fermi energy. This allows us to evidence superconducting electron interference effects that constitute an analogue of Klein tunneling for superconducting pairs. The interference effects periodically modulate the conductance across the junction. We perform numerical simulations based on the model developed in [2]. We compare this simulated superconductor graphene interface conductance to the experimental conductance. We will also present recent work on nanometric cuprate superconductor/graphene junctions where we observe conductance oscillations with bias voltage. These oscillation period decrease when increasing the graphene channel length which indicates that the interferences happen inside the graphene channel.

cid:E16283C1-AF0D-418F-BA2D-F78A1BBB365A

References:

[1] C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2007)

[2] J. Linder, A. Sudbo, Phys. Rev. Lett. 99, 147001 (2007)

 

Más información: http://www.ifimac.uam.es/category/seminars/

 

Dear all:

 

A new IFIMAC Conference will  take place on Thursday; May 24th at the  Condensed Matter Physics Center (IFIMAC )

You will find all the information below.

 

WHEN: Thursday; May 24 th (2018); 12.00 h

WHERE: Dpto. Física de la Materia Condensada, Facultad Ciencias, Module 3, Seminar Room (5th Floor)

 

SPEAKER: David Perconte-Duplain (Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay)

 

TITLE: Tunable proximity effect in cuprate superconductor/graphene junctions

 

ABSTRACT:

Superconductivity induced by proximity effect is particularly interesting in graphene. For example, because of the conduction and valence bands touching at the Dirac point, an unusual form of the Andreev reflection (the so-called specular Andreev reflection) has been predicted theoretically to happen at a superconductor/graphene interface [1]. We have fabricated cuprate superconductor/graphene planar junctions using a combination of lithography, ion irradiation and CVD graphene transfer techniques. The conductance measurements show that the interfaces are transparent such that the electrical transport is governed by Andreev reflection. The devices allow the modulation of graphene doping via either a top or a back gate, and thus enable electrical control of the graphene’s Fermi energy. This allows us to evidence superconducting electron interference effects that constitute an analogue of Klein tunneling for superconducting pairs. The interference effects periodically modulate the conductance across the junction. We perform numerical simulations based on the model developed in [2]. We compare this simulated superconductor graphene interface conductance to the experimental conductance. We will also present recent work on nanometric cuprate superconductor/graphene junctions where we observe conductance oscillations with bias voltage. These oscillation period decrease when increasing the graphene channel length which indicates that the interferences happen inside the graphene channel.

References:

[1] C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2007)

[2] J. Linder, A. Sudbo, Phys. Rev. Lett. 99, 147001 (2007)

 

 

More information: http://www.ifimac.uam.es/category/seminars/

15/12/2017 - 15/12/2017Geometry invariant phenomena in near zero index media

Abstract:  

Continuous media and metamaterials with a near-zero refractive index (NZI media) provide alternative pathways for the control and manipulation of light-matter interactions.  The exotic behavior of NZI media is rooted in the fact that the wavelength gets effectively stretched as the refractive index vanishes. This allows for pathological solutions to the wave equation, including   spatially static fields distributions which nevertheless dynamically oscillate in time. This paradoxical behavior gives access to a regime of qualitatively different wave dynamics, where the importance of the geometry is lessened, and certain observables are invariant with respect to geometrical deformations, even including changes in the topology of the system.

 

In this talk, I’ll review and discuss some of the geometry-invariant phenomena related to near-zero-index media. Examples will include: (i) transmission (tunneling) of waves through deformed waveguides. (ii) Unconventional resonators supporting modes whose eigenfrequency is independent of the geometry of their external boundary. (iii) Violation of effective medium theory geometrical restrictions, enabling, for example, single unit-cell metamaterials. (iv) Existence of bound states in open 3D compact resonators with arbitrarily shaped boundaries.

Different technological applications and implementations of these concepts will be discussed.

 

Más información: http://www.ifimac.uam.es/category/seminars/

 

12/12/2017 - 12/12/2017Charge and energy noise in ac driven conductors

 

Abstract:  

The  time-dependent driving of nanoscale conductors allows for the controlled creation of single-electron excitations. This effect has been demonstrated experimentally both by application of time-dependent driving to gates coupled to confined systems, such as quantum dots [1], and by specifically shaped ac-driving of two-dimensional conductors [2,3].

However, the spectral properties of the injected signal are in general not known; moreover, the particle emission goes along with the excitation of electron-hole pairs with some unknown energy distribution. These issues can be addressed by studying fluctuations in the detected currents: not only do such fluctuations provide more insight into how to increase the precision of the single-particle emission, but also they allow for obtaining more information about the character of the emitted signal.

 

Here, I will present a theoretical study of charge and energy currents and their fluctuations in coherent conductors driven by different types of time-periodic bias voltages, based on a scattering matrix approach [4,5].  Specifically, we investigate the role of electron-like and hole-like excitations created by the driving in the charge current noise, where they only contribute separately. In contrast, additional features due to electron-hole correlations appear in the energy noise.

We then compare two different types of driving schemes [6], that is for a driven mesoscopic capacitor [1] as well as for a Lorentzian-shaped bias voltage [3], which do not differ in the number of injected particles, but only in their energetic properties.

Finally, I will discuss proposals for the detection of charge and energy noise, either through power fluctuations [4], or via frequency-dependent temperature and electrochemical-potential fluctuations in a probe reservoir [7].

sys

References:

[1] G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D. C. Glattli, A. Cavanna, B. Etienne, Y. Jin: Science 316, 1169 (2007).

[2] J. Gabelli and B. Reulet, Phys. Rev. B 87, 075403 (2013).

[3] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider, P. Roulleau, and D. C. Glattli, Nature 502, 659 (2013).

[4] F. Battista, F. Haupt, and J. Splettstoesser, Phys. Rev. B 90, 085418 (2014)

[5] F. Battista, F. Haupt, and J. Splettstoesser, J. Phys. Conf. Ser. 568, 052008 (2014)

[6] N. Dashti, M. Misiorny, P. Samuelsson, and J. Splettstoesser, in preparation

[7] N. Dashti, M. Misiorny, P. Samuelsson, and J. Splettstoesser, in preparation.

 

 

Más información: http://www.ifimac.uam.es/category/seminars/

12/09/2017 - 12/09/2017Surface chemical reactions at epitaxial graphene and material beyond graphene

Abstract:  

In this talk, an overview of surface-science investigations on the chemical reactivity of epitaxial graphene (Gr) and materials “beyond graphene” (van der Waals semiconductors, topological insulators, Dirac semimetals, Weyl semimetals) will be provided.

 

By means of time-resolved X-ray photoemission spectroscopy and high-resolution electron energy loss spectroscopy, different surface chemical reactions in epitaxial Gr have been followed in real time (Gr growth by cracking of hydrocarbons, oxidation, intercalation of chemical species).

In particular, we have observed that, due to the similar work functions, Gr grows as an undoped sheet on the Pt-skin of Pt3Ni(111) but in an oxygen environment Ni segregation toward the surface occurs with selective oxidation of Ni. Subsequently, the Pt skin underneath Gr is replaced by a nickel-oxide skin. In the oxidation process, Gr acquires a p-type doping of 0.3 eV [1].

We have also used surface-science tools for investigating Gr employment in the fields of energy and catalysis. By means of a combination of surface-science spectroscopies and density functional theory [2], we have unveiled the mechanisms ruling the catalytic role of epitaxial Gr grown on transition-metal substrates for the production of hydrogen from water. Water decomposition at the Gr/metal interface at room temperature provides a hydrogenated Gr sheet, which is buckled and decoupled from the metal substrate. Molecular hydrogen is released upon heating above T=400 K.

 

Moreover, the analysis of the chemical reactivity of surface defects of two-dimensional materials provides important information for the nanofabrication process of electronic devices with active channels of ultrathin flakes of black phosphorus (few-layer phosphorene) [3] or InSe [4], which require the use of capping layers in order to avoid surface degradation in ambient conditions. In particular, we find high reactivity of phosphorene toward water, oxygen and CO [5], while water decomposition at room temperature occurs at Se vacancies of InSe [4].

 

Furthermore, the chemical inertness of high-quality single crystals of topological insulators toward ambient gases [6] will be discussed. The subsequent ambient stability of uncapped topological insulator-based nanodevices [7] paves the way for the technological exploitation of topological insulators in the fields of plasmonics [8] and Terahertz photodetection [7].

Finally, surface-science investigations on the chemical reactivity of Weyl semimetals and Dirac semimetals, also highlighting their potential applications in catalysis, will be presented.

References

 

[1]         A. Politano and G. Chiarello, 2D Mater. 4 (2017) 035003.

[2]          A. Politano et al., ACS Nano 10 (2016) 4543.

[3]          L. Viti et al., Adv. Mater. 27 (2015) 5567; L. Viti et al., Adv. Mater. 28 (2016) 7390.

[4]          A. Politano et al. Nanoscale 8 (2016) 8474.

[5           A. Politano et al., Nano Res. 9 (2016) 2598.

[6]          A. Politano et al., J. Phys. Chem. C 118 (2014) 21517.

[7]           L. Viti et al., Nano Lett. 16 (2016) 80; A. Politano et al. APL Mater. 5 (2017) 035504.

[8]          A. Politano et al., Phys. Rev. Lett. 115 (2015) 216802.

Más información: http://www.ifimac.uam.es/category/seminars/

 

 

Destacados

No existen eventos destacados en esta categoría

Generales

Total 100 eventos
Agenda de eventos
FechaEvento
07/11/2018 - 07/11/2018Las nuevas Neurotecnologías: impacto en la Ciencia, Medicina y Sociedad

SPEAKER:

DR. Rafael Yuste

Professor of Biological Sciences, Director NeuroTechnology Center, Columbia University, New York.

 

24/05/2018 - 24/05/2018Tunable proximity effect in cuprate superconductor/graphene junctions

Presentación a cargo de David Perconte-Duplain

(Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay)

Abstract:  

Superconductivity induced by proximity effect is particularly interesting in graphene. For example, because of the conduction and valence bands touching at the Dirac point, an unusual form of the Andreev reflection (the so-called specular Andreev reflection) has been predicted theoretically to happen at a superconductor/graphene interface [1]. We have fabricated cuprate superconductor/graphene planar junctions using a combination of lithography, ion irradiation and CVD graphene transfer techniques. The conductance measurements show that the interfaces are transparent such that the electrical transport is governed by Andreev reflection. The devices allow the modulation of graphene doping via either a top or a back gate, and thus enable electrical control of the graphene’s Fermi energy. This allows us to evidence superconducting electron interference effects that constitute an analogue of Klein tunneling for superconducting pairs. The interference effects periodically modulate the conductance across the junction. We perform numerical simulations based on the model developed in [2]. We compare this simulated superconductor graphene interface conductance to the experimental conductance. We will also present recent work on nanometric cuprate superconductor/graphene junctions where we observe conductance oscillations with bias voltage. These oscillation period decrease when increasing the graphene channel length which indicates that the interferences happen inside the graphene channel.

cid:E16283C1-AF0D-418F-BA2D-F78A1BBB365A

References:

[1] C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2007)

[2] J. Linder, A. Sudbo, Phys. Rev. Lett. 99, 147001 (2007)

 

Más información: http://www.ifimac.uam.es/category/seminars/

 

Dear all:

 

A new IFIMAC Conference will  take place on Thursday; May 24th at the  Condensed Matter Physics Center (IFIMAC )

You will find all the information below.

 

WHEN: Thursday; May 24 th (2018); 12.00 h

WHERE: Dpto. Física de la Materia Condensada, Facultad Ciencias, Module 3, Seminar Room (5th Floor)

 

SPEAKER: David Perconte-Duplain (Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay)

 

TITLE: Tunable proximity effect in cuprate superconductor/graphene junctions

 

ABSTRACT:

Superconductivity induced by proximity effect is particularly interesting in graphene. For example, because of the conduction and valence bands touching at the Dirac point, an unusual form of the Andreev reflection (the so-called specular Andreev reflection) has been predicted theoretically to happen at a superconductor/graphene interface [1]. We have fabricated cuprate superconductor/graphene planar junctions using a combination of lithography, ion irradiation and CVD graphene transfer techniques. The conductance measurements show that the interfaces are transparent such that the electrical transport is governed by Andreev reflection. The devices allow the modulation of graphene doping via either a top or a back gate, and thus enable electrical control of the graphene’s Fermi energy. This allows us to evidence superconducting electron interference effects that constitute an analogue of Klein tunneling for superconducting pairs. The interference effects periodically modulate the conductance across the junction. We perform numerical simulations based on the model developed in [2]. We compare this simulated superconductor graphene interface conductance to the experimental conductance. We will also present recent work on nanometric cuprate superconductor/graphene junctions where we observe conductance oscillations with bias voltage. These oscillation period decrease when increasing the graphene channel length which indicates that the interferences happen inside the graphene channel.

References:

[1] C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2007)

[2] J. Linder, A. Sudbo, Phys. Rev. Lett. 99, 147001 (2007)

 

 

More information: http://www.ifimac.uam.es/category/seminars/

15/12/2017 - 15/12/2017Geometry invariant phenomena in near zero index media

Abstract:  

Continuous media and metamaterials with a near-zero refractive index (NZI media) provide alternative pathways for the control and manipulation of light-matter interactions.  The exotic behavior of NZI media is rooted in the fact that the wavelength gets effectively stretched as the refractive index vanishes. This allows for pathological solutions to the wave equation, including   spatially static fields distributions which nevertheless dynamically oscillate in time. This paradoxical behavior gives access to a regime of qualitatively different wave dynamics, where the importance of the geometry is lessened, and certain observables are invariant with respect to geometrical deformations, even including changes in the topology of the system.

 

In this talk, I’ll review and discuss some of the geometry-invariant phenomena related to near-zero-index media. Examples will include: (i) transmission (tunneling) of waves through deformed waveguides. (ii) Unconventional resonators supporting modes whose eigenfrequency is independent of the geometry of their external boundary. (iii) Violation of effective medium theory geometrical restrictions, enabling, for example, single unit-cell metamaterials. (iv) Existence of bound states in open 3D compact resonators with arbitrarily shaped boundaries.

Different technological applications and implementations of these concepts will be discussed.

 

Más información: http://www.ifimac.uam.es/category/seminars/

 

12/12/2017 - 12/12/2017Charge and energy noise in ac driven conductors

 

Abstract:  

The  time-dependent driving of nanoscale conductors allows for the controlled creation of single-electron excitations. This effect has been demonstrated experimentally both by application of time-dependent driving to gates coupled to confined systems, such as quantum dots [1], and by specifically shaped ac-driving of two-dimensional conductors [2,3].

However, the spectral properties of the injected signal are in general not known; moreover, the particle emission goes along with the excitation of electron-hole pairs with some unknown energy distribution. These issues can be addressed by studying fluctuations in the detected currents: not only do such fluctuations provide more insight into how to increase the precision of the single-particle emission, but also they allow for obtaining more information about the character of the emitted signal.

 

Here, I will present a theoretical study of charge and energy currents and their fluctuations in coherent conductors driven by different types of time-periodic bias voltages, based on a scattering matrix approach [4,5].  Specifically, we investigate the role of electron-like and hole-like excitations created by the driving in the charge current noise, where they only contribute separately. In contrast, additional features due to electron-hole correlations appear in the energy noise.

We then compare two different types of driving schemes [6], that is for a driven mesoscopic capacitor [1] as well as for a Lorentzian-shaped bias voltage [3], which do not differ in the number of injected particles, but only in their energetic properties.

Finally, I will discuss proposals for the detection of charge and energy noise, either through power fluctuations [4], or via frequency-dependent temperature and electrochemical-potential fluctuations in a probe reservoir [7].

sys

References:

[1] G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D. C. Glattli, A. Cavanna, B. Etienne, Y. Jin: Science 316, 1169 (2007).

[2] J. Gabelli and B. Reulet, Phys. Rev. B 87, 075403 (2013).

[3] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider, P. Roulleau, and D. C. Glattli, Nature 502, 659 (2013).

[4] F. Battista, F. Haupt, and J. Splettstoesser, Phys. Rev. B 90, 085418 (2014)

[5] F. Battista, F. Haupt, and J. Splettstoesser, J. Phys. Conf. Ser. 568, 052008 (2014)

[6] N. Dashti, M. Misiorny, P. Samuelsson, and J. Splettstoesser, in preparation

[7] N. Dashti, M. Misiorny, P. Samuelsson, and J. Splettstoesser, in preparation.

 

 

Más información: http://www.ifimac.uam.es/category/seminars/

12/09/2017 - 12/09/2017Surface chemical reactions at epitaxial graphene and material beyond graphene

Abstract:  

In this talk, an overview of surface-science investigations on the chemical reactivity of epitaxial graphene (Gr) and materials “beyond graphene” (van der Waals semiconductors, topological insulators, Dirac semimetals, Weyl semimetals) will be provided.

 

By means of time-resolved X-ray photoemission spectroscopy and high-resolution electron energy loss spectroscopy, different surface chemical reactions in epitaxial Gr have been followed in real time (Gr growth by cracking of hydrocarbons, oxidation, intercalation of chemical species).

In particular, we have observed that, due to the similar work functions, Gr grows as an undoped sheet on the Pt-skin of Pt3Ni(111) but in an oxygen environment Ni segregation toward the surface occurs with selective oxidation of Ni. Subsequently, the Pt skin underneath Gr is replaced by a nickel-oxide skin. In the oxidation process, Gr acquires a p-type doping of 0.3 eV [1].

We have also used surface-science tools for investigating Gr employment in the fields of energy and catalysis. By means of a combination of surface-science spectroscopies and density functional theory [2], we have unveiled the mechanisms ruling the catalytic role of epitaxial Gr grown on transition-metal substrates for the production of hydrogen from water. Water decomposition at the Gr/metal interface at room temperature provides a hydrogenated Gr sheet, which is buckled and decoupled from the metal substrate. Molecular hydrogen is released upon heating above T=400 K.

 

Moreover, the analysis of the chemical reactivity of surface defects of two-dimensional materials provides important information for the nanofabrication process of electronic devices with active channels of ultrathin flakes of black phosphorus (few-layer phosphorene) [3] or InSe [4], which require the use of capping layers in order to avoid surface degradation in ambient conditions. In particular, we find high reactivity of phosphorene toward water, oxygen and CO [5], while water decomposition at room temperature occurs at Se vacancies of InSe [4].

 

Furthermore, the chemical inertness of high-quality single crystals of topological insulators toward ambient gases [6] will be discussed. The subsequent ambient stability of uncapped topological insulator-based nanodevices [7] paves the way for the technological exploitation of topological insulators in the fields of plasmonics [8] and Terahertz photodetection [7].

Finally, surface-science investigations on the chemical reactivity of Weyl semimetals and Dirac semimetals, also highlighting their potential applications in catalysis, will be presented.

References

 

[1]         A. Politano and G. Chiarello, 2D Mater. 4 (2017) 035003.

[2]          A. Politano et al., ACS Nano 10 (2016) 4543.

[3]          L. Viti et al., Adv. Mater. 27 (2015) 5567; L. Viti et al., Adv. Mater. 28 (2016) 7390.

[4]          A. Politano et al. Nanoscale 8 (2016) 8474.

[5           A. Politano et al., Nano Res. 9 (2016) 2598.

[6]          A. Politano et al., J. Phys. Chem. C 118 (2014) 21517.

[7]           L. Viti et al., Nano Lett. 16 (2016) 80; A. Politano et al. APL Mater. 5 (2017) 035504.

[8]          A. Politano et al., Phys. Rev. Lett. 115 (2015) 216802.

Más información: http://www.ifimac.uam.es/category/seminars/

 

 

No existen eventos en esta categoría
No existen eventos en esta categoría
No existen eventos en esta categoría

Estudios

No existen eventos en esta categoría

Síguenos en...

La UAM inviste doctores ‘honoris causa’ a Sir Fraser Stoddart y al maestro Joaquín Achúcarro
Giacomo Rizzolatti imparte la Conferencia Tatiana Pérez de Guzmán el Bueno
La obra de Florence Nightingale centró el Día Internacional de Enfermería

Agentes y colaboradores

  • Universidad Autónoma de Madrid. Enlace externo. Abre en ventana nueva.
  • CSIC. Enlace externo. Abre en ventana nueva.
  • ASEYACOVI. Enlace externo. Abre en ventana nueva.
  • ACENOMA. Enlace externo. Abre en ventana nueva.
  • AICA. Enlace externo. Abre en ventana nueva.
  • Centro de Microanálisis de Materiales (CMAM). Enlace externo. Abre en ventana nueva.
  • Centro de Investigación en Física de la Materia Condensada (IFIMAC). Enlace externo. Abre en ventana nueva.
  • CBMSO - Centro de Biología Molecular Severo Ochoa . Enlace externo. Abre en ventana nueva.
  • CIAL - Centro de Investigación en Ciencias de la Alimentación. Enlace externo. Abre en ventana nueva.
  • CNB - Centro Nacional de Biotecnología . Enlace externo. Abre en ventana nueva.
  • Centro de Iniciativas Emprendedoras (CIADE). Enlace externo. Abre en ventana nueva.
  • Cámara de Madrid. Enlace externo. Abre en ventana nueva.
  • FEMAN. Enlace externo. Abre en ventana nueva.
  • Fundación Universitaria Autónoma de Madrid. Enlace externo. Abre en ventana nueva.
  • ICMAT - Instituto de Ciencias Matemáticas. Enlace externo. Abre en ventana nueva.
  • ICMM - Instituto de Ciencia de Materiales de Madrid. Enlace externo. Abre en ventana nueva.
  • ICP - Instituto de Catálisis y Petroquímica. Enlace externo. Abre en ventana nueva.
  • ICV - Instituto de Cerámica y Vidrio. Enlace externo. Abre en ventana nueva.
  • IFT - Instituto de FísicaTeórica. Enlace externo. Abre en ventana nueva.
  • IIBM - Instituto de Investigaciones Biomédicas Alberto Sols. Enlace externo. Abre en ventana nueva.
  • IMDEA - Alimentación. Enlace externo. Abre en ventana nueva.
  • IMDEA - Nanociencia. Enlace externo. Abre en ventana nueva.
  • IMM - Instituto de Microelectrónica de Madrid. Enlace externo. Abre en ventana nueva.
  • InNorMadrid. Enlace externo. Abre en ventana nueva.
  • Parque Científico de Madrid. Enlace externo. Abre en ventana nueva.
  • Oficina de Transferencia de Resultados de la Investigación (OTRI) de la UAM. Enlace externo. Abre en ventana nueva.
  • Facultad de Ciencias. Enlace externo. Abre en ventana nueva.
  • Facultad de Ciencias Económicas y Empresariales. Enlace externo. Abre en ventana nueva.
  • Facultad de Derecho. Enlace externo. Abre en ventana nueva.
  • Facultad de Filosofía y Letras. Enlace externo. Abre en ventana nueva.
  • Facultad de Medicina. Enlace externo. Abre en ventana nueva.
  • Facultad de Formación de Profesorado y Educación. Enlace externo. Abre en ventana nueva.
  • Facultad de Psicología. Enlace externo. Abre en ventana nueva.
  • Escuela Politécnica Superior. Enlace externo. Abre en ventana nueva.
Proyecto realizado con ayudas concedidas por el Ministerio de Economía y Competitividad / EXPEDIENTE: CEI10-1-0009 CEI UAM+CSIC: INNOCAMPUS 2010 Proyecto financiado por el Ministerio de Educación, Cultura y Deporte, y el Ministerio de Economía y Competitividad en el marco del Programa Campus de Excelencia Internacional/ EXPEDIENTE: CEI10-1-0009 CEI UAM+CSIC: INNOCAMPUS 2010