Ir al contenido principal

Campus de Excelencia InterncionalCampus of International Excellence

Polariton lattices a novel platform for analogue simulation

Fechas celebración

Desde el 14-12-2017 hasta el 14-12-2017

Hora Celebración

15 h

Lugar Celebración

Dpto. Física Teórica de la Materia Condensada, Facultad Ciencias, Modulo 5, Sala de Seminarios (5ª Planta)




A large variety of computationally intractable systems can be mapped into certain univer-

sal classical spin models such as an Ising, X Y or Heisenberg models that are characterised by given degrees of freedom, “spins”, their interactions, “couplings,” and their associated cost function, “Hamiltonian”.  Various physical platforms have been proposed to simulate such models using superconducting  qubits, optical lattices, coupled lasers etc.

We  introduce polariton  lattices as a  new platform  for  analogue  simula- tion;   based on well-established semi- conductor and optical control technolo- gies polariton simulators allow for rapid scalability,  ease  of tunability  and ef- fortless readability.   Polariton conden- sates can be  imprinted  into  any two- dimensional lattices either  by  spatial modulation  of  the  pumping  laser or by lithographic techniques during the growth process, offering straightforward scalability.    In  the  case  of  optically imprinted polariton lattices with freely propagating polariton condensates,  we recently demonstrated that  the phase- configuration acquired in  a  polariton dyad or triad  is chosen  so as to max- imise polariton occupancy [1], while by expanding to square, and rhombic lat- tices as  well as  to arbitrary  polariton graphs we  simulated annealing of the X Y Hamiltonian through bosonic stim- ulation [2]. The bottom-up approach of

bosonic stimulation is achieved here by gradually increasing the excitation density to con- densation threshold. This is an advantage over classical or quantum annealing techniques, where the global ground state is reached through transitions over metastable excited states with an increase of the cost of the search with the size of the system.

By controlling the separation distance, in-plane wavevector, and spin of the injected condensates in polariton graphs, we acquire  several degrees of freedom in the tunability of  inter-site interactions, whilst the continuous coupling of polaritons to free photons offers effortless readability of all the characteristics of the polariton condensates such as energy, momentum, spin, and most critically their phase. The above constitute a unique toolbox for realising intriguing discrete giant vortices, controllable next nearest neighbour interactions, dynamic phase transitions and simulating artificial solids.



[1] H. Ohadi, R.L. Gregory, T. Freegarde, Y.G. Rubo, A.V. Kavokin, N.G. Berloff, and

P.G. Lagoudakis, Phys. Rev. X, 6, 031032 (2016)

[2] Natalia G. Berloff, Matteo Silva, Kirill  Kalinin, Alexis Askitopoulos, Julian D. T¨opfer, Pasquale Cilibrizzi, Wolfgang Langbein and Pavlos G. Lagoudakis, Nature Materials in

print DOI: 10.1038/NMAT4971 (2017)


Más información:

Agentes y colaboradores

  • Universidad Autónoma de Madrid
  • CSIC
  • AICA
  • Centro de Microanálisis de Materiales (CMAM)
  • Centro de Investigación en Física de la Materia Condensada (IFIMAC)
  • CBMSO - Centro de Biología Molecular Severo Ochoa
  • CIAL - Centro de Investigación en Ciencias de la Alimentación
  • CNB - Centro Nacional de Biotecnología 
  • Centro de Iniciativas Emprendedoras (CIADE)
  • Cámara de Madrid
  • Fundación Universitaria Autónoma de Madrid
  • ICMAT - Instituto de Ciencias Matemáticas
  • ICMM - Instituto de Ciencia de Materiales de Madrid
  • ICP - Instituto de Catálisis y Petroquímica
  • ICV - Instituto de Cerámica y Vidrio
  • IFT - Instituto de FísicaTeórica
  • IIBM - Instituto de Investigaciones Biomédicas Alberto Sols
  • IMDEA - Alimentación
  • IMDEA - Nanociencia
  • IMM - Instituto de Microelectrónica de Madrid
  • InNorMadrid
  • Parque Científico de Madrid
  • Oficina de Transferencia de Resultados de la Investigación (OTRI) de la UAM
  • Facultad de Ciencias
  • Facultad de Ciencias Económicas y Empresariales
  • Facultad de Derecho
  • Facultad de Filosofía y Letras
  • Facultad de Medicina
  • Facultad de Formación de Profesorado y Educación
  • Facultad de Psicología
  • Escuela Politécnica Superior
Proyecto realizado con ayudas concedidas por el Ministerio de Economía y Competitividad / EXPEDIENTE: CEI10-1-0009 CEI UAM+CSIC: INNOCAMPUS 2010 Proyecto financiado por el Ministerio de Educación, Cultura y Deporte, y el Ministerio de Economía y Competitividad en el marco del Programa Campus de Excelencia Internacional/ EXPEDIENTE: CEI10-1-0009 CEI UAM+CSIC: INNOCAMPUS 2010