Ir al contenido principal

Campus de Excelencia InterncionalCampus of International Excellence

Exploring molecular functionalities on surfaces

Fechas celebración

Desde el 24-11-2017 hasta el 24-11-2017

Hora Celebración

12 h

Lugar Celebración

Dpto. Física de la Materia Condensada, Facultad Ciencias, Modulo 3, Sala de Seminarios (5ª Planta)

Descripción

 

Abstract:  

Implementation of fully functional devices based on the concept of Molecular electronics depends strongly on our ability to characterize, control and exploit properties of single molecules. Scanning probe technique offers the unique possibility to tackle these goals. As a proof, we will demonstrate control of electromechanical response and single electron charge manipulation within single molecules.

 

First, we will also discuss the piezoelectric effect in single helicene molecules on the Ag(111) surface, using the non-contact atomic force microscopy (AFM). The helicnes on the substrate forms circular and linear islands, which can be effectively disassembled to individual molecules by the AFM tip, to exclude collective influence on the piezoelectric measurements. Force spectroscopies reveal strong bias-induced deformations of the molecules as shown on Figure. The presence of the electric dipole coupled with a soft vibrational mode steaming from a helical structure of the molecule originates the strong piezoelectric effect. We corroborate the experimental evidence by the total energy DFT simulations.

../Dropbox/Helicene_acetylsulfanyl/Manuscript/Science/Final_images/fig1_final.png

Fig. 2: (a) Ball-and-stick model of the experiment. (b) Measured f(z,VB) for the single molecule 7HdiET with the same tip: the frequency shift f vs. z-distance spectroscopies acquired for different bias voltages VB.

 

Second, we present experimental evidence of controlling multiple charge states on a single 2,6-Bis-ferrocenyl-naphthalene (bis-Fc) molecule, deposited on thin insulating NaCl film, by means of nc-AFM. The bis-Fc molecule consists of two ferrocene units, which allows stable formation of single and double charge states within a single bis-Fc molecule including their reversible transitions. The single electron charge state shows bi-stable configuration being localized on one of the ferrocene units. Moreover, we can modify the localization of the single electron charge state between two Fc units by lateral position of AFM probe. Thus, it represents prototypical model of the 2-level quantum system. We also detect strong electromechanical coupling between the charge state and SPM probe, showing possibility to design nanoelectromechanical systems on single molecular scale.

 

Más información: http://www.ifimac.uam.es/category/seminars/

Agentes y colaboradores

  • Universidad Autónoma de Madrid
  • CSIC
  • ASEYACOVI
  • ACENOMA
  • AICA
  • Centro de Microanálisis de Materiales (CMAM)
  • Centro de Investigación en Física de la Materia Condensada (IFIMAC)
  • CBMSO - Centro de Biología Molecular Severo Ochoa
  • CIAL - Centro de Investigación en Ciencias de la Alimentación
  • CNB - Centro Nacional de Biotecnología 
  • Centro de Iniciativas Emprendedoras (CIADE)
  • Cámara de Madrid
  • FEMAN
  • Fundación Universitaria Autónoma de Madrid
  • ICMAT - Instituto de Ciencias Matemáticas
  • ICMM - Instituto de Ciencia de Materiales de Madrid
  • ICP - Instituto de Catálisis y Petroquímica
  • ICV - Instituto de Cerámica y Vidrio
  • IFT - Instituto de FísicaTeórica
  • IIBM - Instituto de Investigaciones Biomédicas Alberto Sols
  • IMDEA - Alimentación
  • IMDEA - Nanociencia
  • IMM - Instituto de Microelectrónica de Madrid
  • InNorMadrid
  • Parque Científico de Madrid
  • Oficina de Transferencia de Resultados de la Investigación (OTRI) de la UAM
  • Facultad de Ciencias
  • Facultad de Ciencias Económicas y Empresariales
  • Facultad de Derecho
  • Facultad de Filosofía y Letras
  • Facultad de Medicina
  • Facultad de Formación de Profesorado y Educación
  • Facultad de Psicología
  • Escuela Politécnica Superior
Proyecto realizado con ayudas concedidas por el Ministerio de Economía y Competitividad / EXPEDIENTE: CEI10-1-0009 CEI UAM+CSIC: INNOCAMPUS 2010 Proyecto financiado por el Ministerio de Educación, Cultura y Deporte, y el Ministerio de Economía y Competitividad en el marco del Programa Campus de Excelencia Internacional/ EXPEDIENTE: CEI10-1-0009 CEI UAM+CSIC: INNOCAMPUS 2010