Ir al contenido principal

Campus de Excelencia InterncionalCampus of International Excellence



Total 100 eventos
Agenda de eventos
12/09/2017 - 12/09/2017Surface chemical reactions at epitaxial graphene and material beyond graphene


In this talk, an overview of surface-science investigations on the chemical reactivity of epitaxial graphene (Gr) and materials “beyond graphene” (van der Waals semiconductors, topological insulators, Dirac semimetals, Weyl semimetals) will be provided.


By means of time-resolved X-ray photoemission spectroscopy and high-resolution electron energy loss spectroscopy, different surface chemical reactions in epitaxial Gr have been followed in real time (Gr growth by cracking of hydrocarbons, oxidation, intercalation of chemical species).

In particular, we have observed that, due to the similar work functions, Gr grows as an undoped sheet on the Pt-skin of Pt3Ni(111) but in an oxygen environment Ni segregation toward the surface occurs with selective oxidation of Ni. Subsequently, the Pt skin underneath Gr is replaced by a nickel-oxide skin. In the oxidation process, Gr acquires a p-type doping of 0.3 eV [1].

We have also used surface-science tools for investigating Gr employment in the fields of energy and catalysis. By means of a combination of surface-science spectroscopies and density functional theory [2], we have unveiled the mechanisms ruling the catalytic role of epitaxial Gr grown on transition-metal substrates for the production of hydrogen from water. Water decomposition at the Gr/metal interface at room temperature provides a hydrogenated Gr sheet, which is buckled and decoupled from the metal substrate. Molecular hydrogen is released upon heating above T=400 K.


Moreover, the analysis of the chemical reactivity of surface defects of two-dimensional materials provides important information for the nanofabrication process of electronic devices with active channels of ultrathin flakes of black phosphorus (few-layer phosphorene) [3] or InSe [4], which require the use of capping layers in order to avoid surface degradation in ambient conditions. In particular, we find high reactivity of phosphorene toward water, oxygen and CO [5], while water decomposition at room temperature occurs at Se vacancies of InSe [4].


Furthermore, the chemical inertness of high-quality single crystals of topological insulators toward ambient gases [6] will be discussed. The subsequent ambient stability of uncapped topological insulator-based nanodevices [7] paves the way for the technological exploitation of topological insulators in the fields of plasmonics [8] and Terahertz photodetection [7].

Finally, surface-science investigations on the chemical reactivity of Weyl semimetals and Dirac semimetals, also highlighting their potential applications in catalysis, will be presented.



[1]         A. Politano and G. Chiarello, 2D Mater. 4 (2017) 035003.

[2]          A. Politano et al., ACS Nano 10 (2016) 4543.

[3]          L. Viti et al., Adv. Mater. 27 (2015) 5567; L. Viti et al., Adv. Mater. 28 (2016) 7390.

[4]          A. Politano et al. Nanoscale 8 (2016) 8474.

[5           A. Politano et al., Nano Res. 9 (2016) 2598.

[6]          A. Politano et al., J. Phys. Chem. C 118 (2014) 21517.

[7]           L. Viti et al., Nano Lett. 16 (2016) 80; A. Politano et al. APL Mater. 5 (2017) 035504.

[8]          A. Politano et al., Phys. Rev. Lett. 115 (2015) 216802.

Más información:



30/06/2017 - 30/06/2017Some novel science in the field of nanophotonics



Via nanophotonics, one can tailor the laws of physics (as far as light is concerned) almost at will. This way, a variety of novel physical phenomena can be enabled and observed. Some examples in topology and light-matter interaction will be presented.




Más información:

16/06/2017 - 16/06/2017Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films


The superconductor-insulator transition (SIT) is a quantum phase transition in disordered superconducting films that occurs at the point where two inherently two-dimensional topological phase transitions - charage and vortex Berezinskii-Kosterlitz-Thouless (BKT) transitions - terminate each other. Applied magnetic fields can tune the SIT with high resolution, offering a window into relatively unexplored electronic functionalities. While the superconducting side of the SIT is well understood, the nature of the highly resistive superinsulating state that terminates two-dimensional superconductivity at the quantum critical point remains an open question.

I will present an experimental observation of the magnetic field-driven superconductor-superinsulator transition in disordered thin NbTiN films and demonstrate that the highly resistive state is an ordered charge BKT state. The observed nonmonotonic behaviour of the charge BKT transition temperature with magnetic field allows resolving a long-standing question of the origin of a giant magnetoresistance peak in the insulating state. These findings establish that BKT physics is a universal platform for the dual superconducting and superinsulating states.

Más información:

12/02/2017 - 12/02/2017Ciclo Ciencia en Primera Persona: "La superconductividad: ese extraño fenómeno cuántico que puedes ver", por Belén Valenzuela

Belén Valenzuela es científico titular en el Instituto de Ciencia de Materiales de Madrid
desde el 2009. Hizo físicas en la UAM y se doctoró en la Universidad Carlos III de

La conferencia se imparte dentro del ciclo "Ciencia en primera persona", charlas divulgativas en las que un equipo de investigadores acercarán su trabajo y los avances en su ámbito de estudio a todo tipo de público.

Las conferencias tendrán lugar el segundo domingo de cada mes a las 12 horas. La entrada es gratuita.

Más información

30/01/2017 - 01/02/20172017 Workshop. Desing, Thinking & Innovation

A workshop with professor Srikant Datar of the Harvard Business School.

To register: Send your resumen (max. 2 pages) by November 15th, 2016 to:


No existen eventos destacados en esta categoría


Total 100 eventos
Agenda de eventos
15/12/2017 - 15/12/2017Geometry invariant phenomena in near zero index media


Continuous media and metamaterials with a near-zero refractive index (NZI media) provide alternative pathways for the control and manipulation of light-matter interactions.  The exotic behavior of NZI media is rooted in the fact that the wavelength gets effectively stretched as the refractive index vanishes. This allows for pathological solutions to the wave equation, including   spatially static fields distributions which nevertheless dynamically oscillate in time. This paradoxical behavior gives access to a regime of qualitatively different wave dynamics, where the importance of the geometry is lessened, and certain observables are invariant with respect to geometrical deformations, even including changes in the topology of the system.


In this talk, I’ll review and discuss some of the geometry-invariant phenomena related to near-zero-index media. Examples will include: (i) transmission (tunneling) of waves through deformed waveguides. (ii) Unconventional resonators supporting modes whose eigenfrequency is independent of the geometry of their external boundary. (iii) Violation of effective medium theory geometrical restrictions, enabling, for example, single unit-cell metamaterials. (iv) Existence of bound states in open 3D compact resonators with arbitrarily shaped boundaries.

Different technological applications and implementations of these concepts will be discussed.


Más información:


14/12/2017 - 14/12/2017Polariton lattices a novel platform for analogue simulation



A large variety of computationally intractable systems can be mapped into certain univer-

sal classical spin models such as an Ising, X Y or Heisenberg models that are characterised by given degrees of freedom, “spins”, their interactions, “couplings,” and their associated cost function, “Hamiltonian”.  Various physical platforms have been proposed to simulate such models using superconducting  qubits, optical lattices, coupled lasers etc.

We  introduce polariton  lattices as a  new platform  for  analogue  simula- tion;   based on well-established semi- conductor and optical control technolo- gies polariton simulators allow for rapid scalability,  ease  of tunability  and ef- fortless readability.   Polariton conden- sates can be  imprinted  into  any two- dimensional lattices either  by  spatial modulation  of  the  pumping  laser or by lithographic techniques during the growth process, offering straightforward scalability.    In  the  case  of  optically imprinted polariton lattices with freely propagating polariton condensates,  we recently demonstrated that  the phase- configuration acquired in  a  polariton dyad or triad  is chosen  so as to max- imise polariton occupancy [1], while by expanding to square, and rhombic lat- tices as  well as  to arbitrary  polariton graphs we  simulated annealing of the X Y Hamiltonian through bosonic stim- ulation [2]. The bottom-up approach of

bosonic stimulation is achieved here by gradually increasing the excitation density to con- densation threshold. This is an advantage over classical or quantum annealing techniques, where the global ground state is reached through transitions over metastable excited states with an increase of the cost of the search with the size of the system.

By controlling the separation distance, in-plane wavevector, and spin of the injected condensates in polariton graphs, we acquire  several degrees of freedom in the tunability of  inter-site interactions, whilst the continuous coupling of polaritons to free photons offers effortless readability of all the characteristics of the polariton condensates such as energy, momentum, spin, and most critically their phase. The above constitute a unique toolbox for realising intriguing discrete giant vortices, controllable next nearest neighbour interactions, dynamic phase transitions and simulating artificial solids.



[1] H. Ohadi, R.L. Gregory, T. Freegarde, Y.G. Rubo, A.V. Kavokin, N.G. Berloff, and

P.G. Lagoudakis, Phys. Rev. X, 6, 031032 (2016)

[2] Natalia G. Berloff, Matteo Silva, Kirill  Kalinin, Alexis Askitopoulos, Julian D. T¨opfer, Pasquale Cilibrizzi, Wolfgang Langbein and Pavlos G. Lagoudakis, Nature Materials in

print DOI: 10.1038/NMAT4971 (2017)


Más información:

12/12/2017 - 12/12/2017Charge and energy noise in ac driven conductors



The  time-dependent driving of nanoscale conductors allows for the controlled creation of single-electron excitations. This effect has been demonstrated experimentally both by application of time-dependent driving to gates coupled to confined systems, such as quantum dots [1], and by specifically shaped ac-driving of two-dimensional conductors [2,3].

However, the spectral properties of the injected signal are in general not known; moreover, the particle emission goes along with the excitation of electron-hole pairs with some unknown energy distribution. These issues can be addressed by studying fluctuations in the detected currents: not only do such fluctuations provide more insight into how to increase the precision of the single-particle emission, but also they allow for obtaining more information about the character of the emitted signal.


Here, I will present a theoretical study of charge and energy currents and their fluctuations in coherent conductors driven by different types of time-periodic bias voltages, based on a scattering matrix approach [4,5].  Specifically, we investigate the role of electron-like and hole-like excitations created by the driving in the charge current noise, where they only contribute separately. In contrast, additional features due to electron-hole correlations appear in the energy noise.

We then compare two different types of driving schemes [6], that is for a driven mesoscopic capacitor [1] as well as for a Lorentzian-shaped bias voltage [3], which do not differ in the number of injected particles, but only in their energetic properties.

Finally, I will discuss proposals for the detection of charge and energy noise, either through power fluctuations [4], or via frequency-dependent temperature and electrochemical-potential fluctuations in a probe reservoir [7].



[1] G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D. C. Glattli, A. Cavanna, B. Etienne, Y. Jin: Science 316, 1169 (2007).

[2] J. Gabelli and B. Reulet, Phys. Rev. B 87, 075403 (2013).

[3] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider, P. Roulleau, and D. C. Glattli, Nature 502, 659 (2013).

[4] F. Battista, F. Haupt, and J. Splettstoesser, Phys. Rev. B 90, 085418 (2014)

[5] F. Battista, F. Haupt, and J. Splettstoesser, J. Phys. Conf. Ser. 568, 052008 (2014)

[6] N. Dashti, M. Misiorny, P. Samuelsson, and J. Splettstoesser, in preparation

[7] N. Dashti, M. Misiorny, P. Samuelsson, and J. Splettstoesser, in preparation.



Más información:

01/12/2017 - 01/12/2017Centrosomes and exosomes molecualr pacemakers of immune synapse







15/11/2017 - 15/11/2017Pair correlation function of a 2D molecular gas directly visualized by scanning tunneling microscopy



The state of matter in fluid phases, determined by the interactions between particles, can be characterized by a pair correlation function (PCF). At the nanoscale, the PCF has been so far obtained experimentally only by means of reciprocal-space techniques. We use scanning tunneling microscopy (STM) at room temperature in combination with lattice-gas kinetic Monte Carlo (KMC) simulations to study a two-dimensional gas of highly mobile molecules of fluorinated copper phthalocyanine on a Si(111)/Tl-(1×1) surface. A relatively slow mechanism of STM image acquisition results in time-averaging of molecular occurrence under the STM tip. We prove by the KMC simulations that in the proximity of fixed molecules STM images represent the PCF. We demonstrate that STM is capable of visualizing directly the pair correlation function in real space.


Más información:


No existen eventos en esta categoría
No existen eventos en esta categoría
No existen eventos en esta categoría


No existen eventos en esta categoría
Síguenos en...
#InnoAlimentación: La nutrición del futuro. Tecnologías, tendencias y networking
El profesor Jeff Errington imparte la 12ª Lección Conmemorativa David Vázquez
XXIV Lección Conmemorativa en honor de Severo Ochoa, a cargo del Profesor Fred Gage

Agentes y colaboradores

  • Universidad Autónoma de Madrid
  • CSIC
  • AICA
  • Centro de Microanálisis de Materiales (CMAM)
  • Centro de Investigación en Física de la Materia Condensada (IFIMAC)
  • CBMSO - Centro de Biología Molecular Severo Ochoa
  • CIAL - Centro de Investigación en Ciencias de la Alimentación
  • CNB - Centro Nacional de Biotecnología 
  • Centro de Iniciativas Emprendedoras (CIADE)
  • Cámara de Madrid
  • Fundación Universitaria Autónoma de Madrid
  • ICMAT - Instituto de Ciencias Matemáticas
  • ICMM - Instituto de Ciencia de Materiales de Madrid
  • ICP - Instituto de Catálisis y Petroquímica
  • ICV - Instituto de Cerámica y Vidrio
  • IFT - Instituto de FísicaTeórica
  • IIBM - Instituto de Investigaciones Biomédicas Alberto Sols
  • IMDEA - Alimentación
  • IMDEA - Nanociencia
  • IMM - Instituto de Microelectrónica de Madrid
  • InNorMadrid
  • Parque Científico de Madrid
  • Oficina de Transferencia de Resultados de la Investigación (OTRI) de la UAM
  • Facultad de Ciencias
  • Facultad de Ciencias Económicas y Empresariales
  • Facultad de Derecho
  • Facultad de Filosofía y Letras
  • Facultad de Medicina
  • Facultad de Formación de Profesorado y Educación
  • Facultad de Psicología
  • Escuela Politécnica Superior
Proyecto realizado con ayudas concedidas por el Ministerio de Economía y Competitividad / EXPEDIENTE: CEI10-1-0009 CEI UAM+CSIC: INNOCAMPUS 2010 Proyecto financiado por el Ministerio de Educación, Cultura y Deporte, y el Ministerio de Economía y Competitividad en el marco del Programa Campus de Excelencia Internacional/ EXPEDIENTE: CEI10-1-0009 CEI UAM+CSIC: INNOCAMPUS 2010